self-adjoint dynamics in multiscale modelling and computation

نویسنده

  • A. J. Roberts
چکیده

Consider the macroscale modelling of microscale spatiotemporal dynamics. Here we develop a new approach to ensure coarse scale discrete models preserve important self-adjoint properties of the fine scale dynamics. The first part explores the discretisation of microscale continuum dynamics. The second addresses how dynamics on a fine lattice are mapped to lattice a factor of two coarser (as in multigrids). Such mapping of discrete lattice dynamics may be iterated to empower us in future research to explore scale dependent emergent phenomena. The support of dynamical systems, centre manifold, theory ensures that the coarse scale modelling applies with a finite spectral gap, in a finite domain, and for all time. The accuracy of the models is limited by the asymptotic resolution of subgrid coarse scale processes, and is controlled by the level of truncation. As given examples demonstrate, the novel feature of the approach developed here is that it ensures the preservation of important conservation properties of the microscale dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of Macro–Nano Mechanical Systems; Fixed Interfacial Multiscale Method

The continuum based approaches don’t provide the correct physics in atomic scales. On the other hand, the molecular based approaches are limited by the length and simulated process time. As an attractive alternative, this paper proposes the Fixed Interfacial Multiscale Method (FIMM) for computationally and mathematically efficient modeling of solid structures. The approach is applicable to mult...

متن کامل

Approximately Quasi Inner Generalized Dynamics on Modules

We investigate some properties of approximately quasi inner generalized dynamics and quasi approximately inner generalized derivations on modules. In particular, we prove that if A is a C*-algebra, is the generator of a generalized dynamics on an A-bimodule M satisfying and there exist two sequences of self adjoint elements in A such that for all in a core for , , then is approx...

متن کامل

Oscillatory Survival Probability and Eigenvalues of the Non-Self-Adjoint Fokker-Planck Operator

We demonstrate the oscillatory decay of the survival probability of the stochastic dynamics dxε = a(xε) dt+ √ 2ε b(xε) dw, which is activated by small noise over the boundary of the domain of attraction D of a stable focus of the drift a(x). The boundary ∂D of the domain is an unstable limit cycle of a(x). The oscillations are explained by a singular perturbation expansion of the spectrum of th...

متن کامل

Metropolis Integration Schemes for Self-Adjoint Diffusions

We present explicit methods for simulating diffusions whose generator is self-adjoint with respect to a known (but possibly not normalizable) density. These methods exploit this property and combine an optimized Runge-Kutta algorithm with a Metropolis-Hastings Monte-Carlo scheme. The resulting numerical integration scheme is shown to be weakly accurate at finite noise and to gain higher order a...

متن کامل

A Review of Two Multiscale Methods for the Simulation of Macromolecular Assemblies: Multiscale Perturbation and Multiscale Factorization

Many mesoscopic N -atom systems derive their structural and dynamical properties from processes coupled across multiple scales in space and time. That is, they simultaneously deform or display collective behaviors, while experiencing atomic scale vibrations and collisions. Due to the large number of atoms involved and the need to simulate over long time periods of biological interest, tradition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008